
CLIPGraphs: Supplementary Material

Contents

1 Introduction 2
1.1 Traces of Utility in our decision-making process: . 2

2 Datasets 3
2.1 Human Preference Dataset . 3
2.2 IRONA Dataset . 3

2.2.1 Rooms . 3
2.2.2 Object Categories . 3

3 Knowledge Graph Creation 3
3.1 Nodes . 4
3.2 Edge Weights . 4

3.2.1 Correct Object-Room Mappings . 5
3.2.2 Incorrect Object-Room Mappings . 7

3.3 Overall . 7
3.4 Comments on node features . 7

4 Loss Function Ablations 8
4.1 vs existing loss functions . 8
4.2 Hyperparameters . 8

4.2.1 Batch Size . 8
4.2.2 Number of negatives . 9

5 Our Model: GCN 10

6 Baseline Predictions 10
6.1 GPT-3 . 10
6.2 Language Encoders . 10
6.3 Our Predictions . 10

7 Qualitative Results 11
7.1 Success Cases . 11
7.2 Failure Cases . 11

8 Some additional Plots 12
8.1 t-SNE . 12

1

1 Introduction

Humans have always been fond of arranging stuff. Over the course of the development of society, the
norms of how we arrange our houses have changed. Still, there are traces of common associations
that we as the Human race have managed to stick to.

When a human being is tasked to find us “Headphones” they would intuitively look for it in
places such as “Home Office”, “Living Room”, and “Entertainment Room”. This small thought
experiment gives us a good idea that subconsciously we have generated some associations between
the objects and the rooms they are supposed to be in. Let’s dig a bit deeper.

1.1 Traces of Utility in our decision-making process:

For some objects this mapping can be guided by “utility”, for example: if asked to find “an apple” in
an unknown house, you know it’s a perishable food item, and food items are meant to be consumed
but also stored appropriately. Thus you would first look for Kitchen, Pantry, or Dining Room
(Whatever is available in your house)
More familiar the object, the less the decision-making time to infer the associated room: One way we
could further comprehend our inference is by breaking down our thought process into steps. Let’s
take an example where the object to be found is an unknown name, you don’t know if it’s a stationery
item. a skin care product? or a species of whale? How would you react in such a situation? a logical
way to go about this is by asking questions. Your first thought while encountering an object category
you don’t know is to get to know its utility. Is it a consumable item? Is it cosmetic? Is it somewhat
related to electronics? and so on.. Once you are known of its utility, you have an estimate of where
different known objects belonging to similar utility are found. This gives you a reasonable amount
of confidence in the room you then choose to go search for your unknown object.
This thought experiment establishes 2 facts:

• By successfully answering some of these questions we humans can infer where that object
should be found in its correct orientation in any house.

• We humans not only have commendable Object-Room mappings in our brains, but we also
leverage the object-object relationships developed on the basis of the co-occurrence of these
objects, which is again influenced by their common utility.

In this work, we aim to use a graph network to cluster commonly occurring household objects
into room categories. The basic intuition behind using a Graph Convolutional Network is to make
use of Object-Room Relationships as well as Object-Object Relationships to generate latent rep-
resentations that are indicative of the categorization of objects into rooms on the basis of their
common feature(utility).

Graph Convolutional Networks not only use node features but also use the message passing
mechanism between neighboring nodes to generate node representations that take into account the
information of neighboring nodes in addition to the node features.

We make use of the Human Preference Dataset [1] to get to know what are some most prevalent
human-accepted correct object-room mappings and further use it along with multimodal CLIP [2]
features to learn such utility-based clustering using a graph network.

2

2 Datasets

We used object,room categories and Human annotations for those as provided by Housekeep [1].
Further we curated a visual counterpart to the 268 object categories.

2.1 Human Preference Dataset

This dataset was curated by Housekeep [1] to understand how humans prefer to put everyday
household objects in an organized and disorganized house. They ran a study on Amazon MTurk
with 372 participants. Here, for a given object-room pair, they asked each participant to classify
the available receptacles of that room into 3 categories:

• misplaced : subset of receptacles where the object is found in un-tidy houses

• correct : subset of receptacles where the object is found in tidy houses

• implausible: subset of receptacles where the object is unlikely to be found either in a tidy or
un-tidy house

They further asked them to rank all the receptacles present in that room. For how they collected
this data, filtered it out, and used it for Scene Rearrangement, we guide the interested readers to
their paper.

2.2 IRONA Dataset

We created a new dataset by scraping 30 images per object category. These were white background
catalog images of the same 268 object categories that Housekeep [1] used to benchmark the Scene-
Rearrangement task.

2.2.1 Rooms

We consider the same 17 room categories as used by Housekeep [1]:

Rooms
bathroom bedroom childs room
closet corridor dining room
exercise room garage home office
kitchen living room lobby
pantry room playroom storage room
television room utility room

2.2.2 Object Categories

The list of 268 object categories we used can be accessed here

3 Knowledge Graph Creation

An important step in learning Object-Room Affinities using our proposed multimodal model was
knowledge graph creation using our IRONA Dataset and Housekeep Human Preference Dataset [1]

3

https://github.com/CLIPGraphs/CLIPGraphs.github.io/blob/irona/objects.txt

Figure 1: Representative Image Of Our Web Scraped Dataset ; 1 image per object category

3.1 Nodes

There are currently 2 types of nodes in our knowledge graph

• Room Nodes: Since we have 17 room categories, there are 17 such nodes. For our proposed
method, the node features for these nodes are generated using the CLIP language encoders.

• Object Nodes: For each of the 268 object categories, 15 images are chosen for training, and
for each of the 268*15 nodes, we generate node features using the CLIP image encoders[2].
(In our proposed method) However, for baseline comparisons, we also create CLIP Language
Embeddings for these 268 Object Categories.

3.2 Edge Weights

For assigning edge weights to various edges between our nodes, we use the ranks provided by House-
keep Human Preference Dataset for each object-room-receptacle1 combination. We further calculate
soft scores using algorithm 1 which takes these ranks as input.

1”receptacle” was a categorization used by Housekeep [1] to define 128 flat horizontal surfaces in a household where
objects can be found - misplaced or correctly placed

4

For each object-room-receptacle combination, 10 annotators were given just 3 categories to clas-
sify the combinations. Therefore for each object-room-receptacle, there could either be a majority
of positive ranks, negative ranks, or implausible ranks:

1. For any object-room-receptacle combination if a majority of annotators (> 5) gave positive
ranks2; we calculate a positive score

2. For any object-room-receptacle combination if a majority of annotators (> 5) gave negative
ranks3; we calculate a negative score

3. However, if implausible ranks were in majority then we need to modify those a bit. According
to Housekeep [1] an implausible combination was such a combination that could neither occur
in an untidy house nor in atidy house. Therefore it accounts for the maximum negative
object-room-receptacle affinity, thus we assign −1 i.e. max possible negative score to such
object-room-receptacle pairs.

Thus finally we would have a dictionary that records whether the majority opinion for every
object-room-receptacle was positive, negative or implausible(-1)

Algorithm 1 Generating ORR Positive Soft Scores

1: for each object in objects do
2: for each room in rooms do
3: ranks← object− room− receptacle− ranks
4: score dict← {}
5: for each receptacle in the room do
6: combination score← []
7: for each rank given for the combination do
8: if rank > 0 then
9: combination score.append(1/rank)

10: end if
11: end for
12: if len(combination score) >= 5 then
13: score dict[combination] = sum(combination score)/max len pos4

14: else
15: score dict[combination] = 0
16: end if
17: end for
18: end for
19: end for

3.2.1 Correct Object-Room Mappings

To get the correct object-roommappings, we compare for a given object which object-room-receptacle
has the highest positive score. We assign that room as the correct object-room mapping.5

2A receptacle with ”+1” rank is a more appropriate for an object as compared to a receptacle with a ”+2” rank
for the same object-room pair.

3A receptacle with ”-1” rank is a receptacle where humans are more prone to keep objects in an untidy state of
the house as compared to a receptacle with a ”-2” rank for the same object-room pair.

4For a given object, max len pos/neg/imp is the maximum number of annotators that gave positive/negative/im-
plausible ranks across all room-receptacle pairs.

5Our future extension would be to extend this mapping to top-K correct rooms

5

Algorithm 2 Generating ORR Negative Soft Scores

1: for each object in objects do
2: for each room in rooms do
3: ranks← object− room− receptacle− ranks
4: score dict← {}
5: for each receptacle in the room do
6: combination score← []
7: min neg rank = min(all ranks for the ORR combination)
8: for each rank given for the combination do
9: if rank < 0 then

10: rank = rank +min neg rank + 1
11: combination score.append(1/rank)
12: end if
13: end for
14: if len(combination score) >= 5 then
15: score dict[combination] = sum(combination score)/max len neg4

16: else
17: score dict[combination] = 0
18: end if
19: end for
20: end for
21: end for

Algorithm 3 Generating ORR Implausible Soft Scores

1: for each object in objects do
2: for each room in rooms do
3: ranks← object− room− receptacle− ranks
4: score dict← {}
5: for each receptacle in the room do
6: combination score← []
7: for each rank given for the combination do
8: if rank == 0 then
9: combination score.append(−1)

10: end if
11: end for
12: if len(combination score) >= 5 then
13: score dict[combination] = sum(combination score)/max len imp4

14: else
15: score dict[combination] = 0
16: end if
17: end for
18: end for
19: end for

6

3.2.2 Incorrect Object-Room Mappings

Once we’ve created the correct object-room GT mapping, it still leaves the other 16 rooms’ edge
weights to be allotted. So for each such object-room pair; there can be 3 cases:

1. All/majority positive receptacles:we assign −ϵ as edge weights

2. All/majority negative receptacles: we assign the mean of all the negative scored recepta-
cles

3. All/majority implausible receptacles: we assign the mean of all the negative scored
receptacles. (since we had already assigned implausible receptacles with -1)

For example, for a particular object-room-receptacle combination, the calculation of positive soft
scores is shown:

knife-bottom cabinet ranks: − 1,−3, 0, 1, 3, 2,−2, 5,−1, 4
Filter the negative ranks: 1, 3, 2, 5, 4

Take the reciprocal of ranks:
1

1
+

1

3
+

1

2
+

1

5
+

1

4
= 2.367

Calculate the mean of reciprocal ranks: 2.283/5 = 0.45

For each object, the ground-truth room is decided by choosing the room containing the highest-
positively scored receptacle for that object. Every other room in the domain is assigned the mean
negative soft score(for a given object-room pair) of all the receptacles present in that room.

3.3 Overall

Table 1 summarizes various information about our knowledge graph that is being used for training
purposes.

Statistics About our Knowledge Graph Value
#Nodes 4020 Object Images Nodes & 17 Room Nodes
#Edges 7,66,649
Self Loops Yes
Train Images 268*15 Images
Test Images 268*10 Images
Val Images 268*5 Images
Types of edges weighted undirected

Table 1: Statistics for the Knowledge Graph created using the web scraped dataset

3.4 Comments on node features

For our proposed method we used 3 architectures of CLIP as given by OpenCLIP [3]: ViT-H/14, and
RN50 have dimensionality of 1024, and ConvNeXt-base has a dimensionality of 512 features. These
were chosen taking into consideration the datasets they were trained on and their performance in
other embodied AI tasks.

7

4 Loss Function Ablations

We considered two performance measures:

1. mAP: The mean average precision (mAP) is the average of precision scores at different recall
values for each instance of an object category, and the mean over all the object categories. For
a given object, Average Precision is calculated by:

AP =
∑
n

(Rn −Rn−1)Pn

Where, Pn and Rn are Precision and Recall values at the nth threshold. Taking a mean over
all the objects, gives us the final mean Average Precision.

2. Top k Hit Ratio: The average fraction of object categories for which the ground truth correct
room was among the Top k estimates from our framework.:

Top-k HR =
1

|O|
∑
o∈O

1(Ro ∩ To ̸= ∅)

where O is the set of objects, Ro is the set of top-k rooms recommended for object o, To is the
ground truth room for object o, and 1 is the indicator function that returns 1 if the condition
is true and 0 otherwise.

4.1 vs existing loss functions

Loss Fn mAP
Margin[4] 0.371
Triplet[5] 0.51
Ours 0.85

4.2 Hyperparameters

We chose a modified version of the loss function used by [6]. The effectiveness of our loss function
depended on our sampling technique. We tuned

1. Batch Size

2. Number of negative nodes sampled per batch for each epoch.

4.2.1 Batch Size

We experiment on the number of batches of anchor, positive and negative nodes sampled per epoch
for loss computation. As evident from the figure, we achieve the best performance at batch size =
15. Thus we continue our experiments with this value. The comparison is shown in Figure 3

8

Figure 2

Figure 3: Variation of testing metrics with number of batches used for contrastive loss

4.2.2 Number of negatives

We compare the performance of our model by changing the number of negative nodes sampled per
anchor point for computing the contrastive loss. The results are compiled in figure 4. As evident
from the figure, the best performance was observed at negative samples = 40. Thus we fix the total
number of negatives per anchor as 40.

Figure 4: Variation of testing metrics with different numbers of negative samples used per anchor.

9

5 Our Model: GCN

Table 2 shows the hyperparameters used for the model.

Hyperparameter Value
1 Node Feature Size 512(ConvNeXt) / 1024 (Others)
2 Output Node Embedding 128
3 GCN[7] Layers 3
4 Learning Rate 10−3

5 Learning Rate Schedule StepLR: step size=1000 , γ = 0.25
6 Temperature 0.01
7 Batch Size [Loss] 15
8 Negatives Per Batch 40
9 Epochs 5k

Table 2: Hyperparameter choices for our Graph Based Network to learn latent representations of
CLIP Visual Encoder Features

6 Baseline Predictions

6.1 GPT-3

To obtain baseline results, we query GPT-3 to rank the 17 rooms for each object like this:

Which of the following rooms would you expect to find a knife block in? Please rank in decreasing
order of likelihood: bathroom, bedroom, child room, closet, corridor, dining room, exercise room,
garage, home office, kitchen, living room, lobby, pantry room, playroom, storage room, television
room, utility room.

We use such queries to obtain room rankings for each of 268 objects and use that to obtain baseline
mAP and hit ratio for GPT-3, and the results are shown in Table 3

Test mAP ⇑ Hit-Ratio ⇑
Top-1 Top-3 Top-5

GPT-3 0.66 0.52 0.76 0.81

Table 3: Results for object-room mappings based on queries to GPT-3

The room rankings for each object category by querying GPT-3 is compiled in the file: gpt pred.txt

6.2 Language Encoders

The code for generating the statistic metrics as well as the object-room mappings corresponding the
each language baseline is available at CLIPGraphs GitHub Repository.

6.3 Our Predictions

Similar rankings for every object category based on our model can be generated by running the
script available at: CLIPGraphs GitHub Repository

10

https://github.com/CLIPGraphs/CLIPGraphs.github.io/blob/422eded6ae5a10458cc0e920ae7c12e437f7107e/gpt_pred.txt
https://github.com/CLIPGraphs/CLIPGraphs.github.io
https://github.com/CLIPGraphs/CLIPGraphs.github.io

7 Qualitative Results

Our model was trained on clean white background images to predict the most appropriate room.
To test its performance on real-world images we ran a few runs on a mobile phone by clicking a
photograph and feeding it to our model. We fed our model images of objects out of the training set
to see its generalization capabilities, we report some success and failure cases for the same.

7.1 Success Cases

Figure 5: Success of the model on unseen object category images (absent in the training set)6

7.2 Failure Cases

Figure 6 shows some specific limitations of our models. In Figure 6a when we input the image of
earpods (not a part of the training set) to the model, the top output prediction is utility room.
The model confuses the images of earpods to similar image of hair dryer, since it does not contain
knowledge of scale. Figure 6b shows the limitation of the model in identifying real objects with
similar category of toys.

(a) Failure to determine correct room for object cat-
egory earpods (not in our train set) because it was
structurally similar to hair dryer category that was
in our training set

(b) Failure with composite object categories; tools
was not a category in our training set, but they were
incorrectly associated with the play room because
they were structurally similar to the toy toolkit that
was in the training set.

Figure 6: Failure cases of our model

6Since these categories were unseen thus we didn’t have any ground truth available, thus we mention the expected
room on the basis of our commonsense

11

Apart from testing our model on unseen categories, we also try our model’s generalization ca-
pabilities on real-world noisy images. For this experiment, we generated 4 different scenarios. The
representative results for 3 object categories are shown below:

Figure 7: Qualitative result of using our framework with images of previously seen objects but in
noisy backgrounds. In each case, the object’s room association was estimated correctly demonstrat-
ing broad applicability of our method

8 Some additional Plots

8.1 t-SNE

Using t-SNE to visualize the high-dimensional embeddings, we observe initial random nodes in
Figure 8, where each color represents objects of a unique room. As the model trains, we observe
clustering in the embedding space to cluster objects belonging to the same room [Figure 9]

12

Figure 8: Untrained TSNE

Figure 9: t-SNE visualization of our embeddings on the test split of the Web Scraped Dataset. The
boxes show images of objects belonging to the same rooms getting clustered a

aFor a more interactive view of this figure, check out our website: https://clipgraphs.github.io
13

https://clipgraphs.github.io

Figure 10: Image showing objects that got
clustered in the t-SNE corresponding to
”Bathroom” room category

Figure 11: Image showing objects that got
clustered in the t-SNE corresponding to
”Pantry” room category

References

[1] Y. Kant, A. Ramachandran, S. Yenamandra, I. Gilitschenski, D. Batra, A. Szot, and H. Agrawal,
“Housekeep: Tidying virtual households using commonsense reasoning,” in European Conference
on Computer Vision, 2022.

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from
natural language supervision,” in International Conference on Machine Learning, 2021.

[3] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco, C. Gordon, C. Schuhmann,
L. Schmidt, and J. Jitsev, “Reproducible scaling laws for contrastive language-image learning,”
ArXiv, vol. abs/2212.07143, 2022.

[4] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recognition
and clustering,” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 815–823, 2015.

[5] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and S. Levine, “Time-contrastive
networks: Self-supervised learning from video,” 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1134–1141, 2017.

[6] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. D. Szlam, “Clip-fields: Weakly
supervised semantic fields for robotic memory,” ArXiv, vol. abs/2210.05663, 2022.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in International Conference on Learning Representations (ICLR), 2017.

14

	Introduction
	Traces of Utility in our decision-making process:

	Datasets
	Human Preference Dataset
	IRONA Dataset
	Rooms
	Object Categories

	Knowledge Graph Creation
	Nodes
	Edge Weights
	Correct Object-Room Mappings
	Incorrect Object-Room Mappings

	Overall
	Comments on node features

	Loss Function Ablations
	vs existing loss functions
	Hyperparameters
	Batch Size
	Number of negatives

	Our Model: GCN
	Baseline Predictions
	GPT-3
	Language Encoders
	Our Predictions

	Qualitative Results
	Success Cases
	Failure Cases

	Some additional Plots
	t-SNE

